Designing new thermoreversible gels by molecular tailoring of hydrophilic-hydrophobic interactions

نویسندگان

  • S. Varghese
  • A. K. Lele
  • R. A. Mashelkar
چکیده

We have shown that the lattice fluid hydrogen bond ~LFHB! model can successfully quantify the first-order volume transition in hydrogels. The model predicts that a critical balance of hydrophilic and hydrophobic interactions is required for a gel to exhibit a discontinuous volume transition. In this work we will report the swelling behavior of a new thermoreversible copolymer hydrogel, which has been synthesized from two monomers, whose homopolymers do not show any volume transition in water in the observable range of temperatures. The discontinuous volume transition phenomenon in the copolymer gel was observed only at a critical balance of hydrophilic-hydrophobic interactions. The discontinuous nature of the volume transition is lost with a subtle change in the hydrophilic-hydrophobic balance. The copolymer gel was synthesized from 2-acrylamido 2-methyl propane sulfonic acid ~AMPS!, which is a hydrophilic monomer, and N-tertiary butylacrylamide ~N-t-BAm!, which is a hydrophobic monomer. The hydrophilic-hydrophobic balance in the gel was altered by either changing the composition of the co-monomers or by substituting the N-t-BAm with another hydrophobic monomer, N-isopropylacrylamide ~NIPAm!. © 2000 American Institute of Physics. @S0021-9606~00!50604-7#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High porosity polyethylene aerogels

Monolithic aerogels of high molecular weight polyethylene (Mw= 3x106- 6x106 g/mol) have been prepared by solvent extraction with supercritical carbon dioxide from thermoreversible gels prepared in decalin. These low density and highly porous aerogels present an apparent porosity up to 90%. The aerogel morphology observed by scanning electron microscopy (SEM) is characterized by spherulitic stru...

متن کامل

Design of new potent HTLV-1 protease inhibitors: in silico study

HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...

متن کامل

Amphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block

Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...

متن کامل

Molecular docking study of anti-viral FDA-approved drugs as novel entry and replication Ebola viral inhibitors

Background & Objective: Because of the reported high ability of virulence and the lack of appropriate drug of Ebola virus during the last decades, many investigations have been accomplished regarding discovery and the introduction of anti-Ebola drugs. The aim of this research was the bioinformatical study of entry and replication of Ebola viral inhibition by drug repurposing. Materials & Method...

متن کامل

Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation.

Graphene nanopores are potential successors to biological and silicon-based nanopores. For sensing applications, it is however crucial to understand and block the strong nonspecific hydrophobic interactions between DNA and graphene. Here we demonstrate a novel scheme to prevent DNA-graphene interactions, based on a tailored self-assembled monolayer. For bare graphene, we encounter a paradox: wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000